Nervenzellen im Krähengehirn ordnen Bilder richtig zu

(23.11.2015) Während des Lernens entstehen Reaktionsmuster, die relevante Zusammenhänge anzeigen ‒ ähnlich wie beim Säugetier

Krähen sind dafür bekannt, dass sie schnell Zusammenhänge herstellen können: nur so können sie sich erfolgreich in unseren Städten zurecht finden und lernen, wie man mit Ampeln umgeht, wer ihnen Nüsse mitbringt, und welche Menschen man besser meiden sollte.


Rabenkrähen lernten, beliebige Bilder in zwei Gruppen einzuteilen. Einzelne Nervenzellen reagierten auf alle Bilder, die in eine bestimmte Gruppe gehörten ‒ unabhängig vom Bildmotiv
Wie das Gehirn der Krähen solche Lernaufgaben meistert, das konnten jetzt Forscher der Universität Tübingen in einer Studie zeigen, die im Fachjournal PNAS (Proceedings of the National Academy of Sciences of the United States of America) erschienen ist.

In der Aufgabe ging es darum, beliebige Bilder in zwei verschiedene Gruppen einzuteilen – manche Bilder waren der Farbe „blau“ zugeordnet, andere der Farbe „rot“. Nachdem sie einen Vogel gesehen hatten, mussten die Krähen z.B. ein rotes Quadrat mit dem Schnabel berühren, wohingegen ein Blumenbild die Auswahl eines blauen Quadrates erforderte.

Zunächst mussten die Krähen durch Ausprobieren/Raten lernen, welche Bilder zu welcher Farbe gehörten. Durch Belohnung für jede richtige Antwort lernten die Krähen innerhalb weniger Wiederholungen die passenden Zusammenhänge für jedes neue Bild.

Durch die gleichzeitige Messung von Hirnströmen konnten die Forscher zeigen, was sich während des Lernens im Gehirn der Krähen abspielt. Einzelne Nervenzellen reagierten unterschiedlich auf die verschiedenen Bilder.

Dabei gab es Zellen, die mit ihrer Aktivität die Bilder je nach der erforderlichen Antwort gruppierten: Eine der Zellen antwortete stark auf alle Bilder der Gruppe „blau“, eine andere auf Bilder der Gruppe „rot“, trotz unterschiedlicher Bildmotive.

Die Zellen speicherten also nicht die Bildmotive im Arbeitsgedächtnis, sondern gleich die mit den Bildern assoziierten Antwortgruppen. Dabei spielte es keine Rolle, ob die Krähen die richtige Antwort erst erlernt hatten, oder ob sie die Bilder schon länger kannten.

Den Neurobiologen gelang es, einzelne Nervenzellen über den Lernprozess zu verfolgen. So konnten sie zeigen, dass sich diese Selektivität innerhalb weniger Minuten ausbildet: „Es ist schon erstaunlich, wie schnell die Krähen diese Assoziationen lernen können – und wie man den Nervenzellen beim Lernen zusehen kann“, sagt Erstautorin Dr. Lena Veit.

„Während des Ratens reagierten viele Zellen kaum auf ein unbekanntes Bild, aber nach wenigen Versuchen, sobald die Krähe die richtige Antwort gelernt hatte, zeigten sie für das gleiche Bild die richtige Antwort an.“

Diese Art der Speicherung im Arbeitsgedächtnis macht offensichtlich Sinn: man muss sich weniger Details merken, und ist gleich auf die richtige Antwort vorbereitet. „Bisher kannte man diese Art der Verarbeitung nur bei Affen“, sagt Projektleiter Professor Andreas Nieder.

„Es verwundert, dass wir ähnliche Lernstrategien in den unterschiedlich aufgebauten Endhirnen von Vögeln und Säugetieren finden“.

Die Forscher fanden aber auch kleine Unterschiede zum Lernen bei Säugetieren. „Die große Frage ist nun, was der unterschiedliche Aufbau des Gehirns für das Zusammenspiel verschiedener Hirnregionen beim Lernen bedeutet.“

Publikation

Lena Veit, Galyna Pidpruzhnykova, Andreas Nieder. Associative learning rapidly establishes neuronal representations of upcoming behavioral choices in crows. Proceedings of the National Academy of Sciences of the USA. Online Early Edition, Nov 23-27, 2015.
www.pnas.org/content/early/recent



Weitere Meldungen

Weißbüschelaffen am Deutschen Primatenzentrum; Bildquelle: Manfred Eberle/DPZ

Eine gentechnisch unterstützte Reise ins Primatengehirn

Die Leibniz-Gemeinschaft fördert das Projekt PRIMADIS mit einer Million Euro
Weiterlesen

Elektronenmikroskopische Darstellung einer erregenden Synapse und Schema des Proteinnetzwerks zur Verankerung der AMPA-Rezeptoren in der Zellmembran.; Bildquelle: Bernd Fakler/Universität Freiburg

Noelin-Proteine zentral für Lernfähigkeit von Säugetiergehirnen

Deutsch-amerikanisches Forschungsteam um Freiburger Physiologen zeigt die fundamentale Bedeutung der Noelin-Proteine für die Plastizität von Nervenzellen auf
Weiterlesen

Bienen; Bildquelle: Christian Verhoeven (www.verhoevenfoto.de)

Fluoreszierendes Protein bringt Licht ins Bienengehirn

Ein internationales Team von Bienenforschenden unter Beteiligung der Heinrich-Heine-Universität Düsseldorf (HHU) hat einen Calcium-Sensor in eine Biene integriert
Weiterlesen

Tauben träumen im Schlaf; Bildquelle: RUB, Marquard

Hirnforschung: Träumen Tauben vom Fliegen?

Träumen galt lange Zeit als etwas, das den Schlaf des Menschen auszeichnet. Neue Erkenntnisse deuten jedoch darauf hin, dass Tauben im Schlaf möglicherweise Flugszenen erleben
Weiterlesen

Dr. Michael Heide; Bildquelle: Sascha Bubner/Deutsches Primatenzentrum GmbH

Das Gen, dem wir unser großes Gehirn verdanken

Hirnorganoide liefern Einblicke in die Evolution des menschlichen Gehirns
Weiterlesen

Ruhr-Universität Bochum

Schlaue Vögel denken smart und sparsam

Die Gehirnzellen von Vögeln benötigen nur etwa ein Drittel der Energie, die Säugetiere aufwenden müssen, um ihr Gehirn zu versorgen
Weiterlesen

Deutsche Wildtier Stiftung

Arbeitsgedächtnis von Vogel- und Affengehirn

Das Arbeitsgedächtnis ist die Fähigkeit des Gehirns, Informationen für kurze Zeit in einem abrufbaren Zustand zu halten und zu verarbeiten
Weiterlesen

Ein Schnitt durch den Haiwirbel zeigt Wachstumsringe, ähnlich denen in Baumstämmen.; Bildquelle: Daniel Erny/Universitätsklinikum Freiburg

Gehirn des weltweit ältesten Wirbeltieres untersucht

Detaillierte Untersuchungen des ältesten Gehirns können neue Erkenntnisse für altersbedingte Krankheiten des Gehirns ermöglichen. Studie im Fachmagazin Acta Neuropathologica erschienen
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen